人类具有出色的能力来推理绑架并假设超出图像的字面内容的内容。通过识别散布在整个场景中的具体视觉线索,我们几乎不禁根据我们的日常经验和对世界的知识来提出可能的推论。例如,如果我们在道路旁边看到一个“ 20英里 /小时”的标志,我们可能会假设街道位于居民区(而不是在高速公路上),即使没有房屋。机器可以执行类似的视觉推理吗?我们提出了Sherlock,这是一个带注释的103K图像的语料库,用于测试机器能力,以超出字面图像内容的绑架推理。我们采用免费观看范式:参与者首先观察并识别图像中的显着线索(例如,对象,动作),然后给定线索,然后提供有关场景的合理推论。我们总共收集了363K(线索,推理)对,该对形成了首个绑架的视觉推理数据集。使用我们的语料库,我们测试了三个互补的绑架推理轴。我们评估模型的能力:i)从大型候选人语料库中检索相关推论; ii)通过边界框来定位推论的证据,iii)比较合理的推论,以匹配人类在新收集的19k李克特级判断的诊断语料库上的判断。尽管我们发现具有多任务目标的微调夹RN50x64优于强大的基准,但模型性能与人类一致之间存在着重要的净空。可在http://visualabduction.com/上获得数据,模型和排行榜
translated by 谷歌翻译
This paper proposes a new regularization algorithm referred to as macro-block dropout. The overfitting issue has been a difficult problem in training large neural network models. The dropout technique has proven to be simple yet very effective for regularization by preventing complex co-adaptations during training. In our work, we define a macro-block that contains a large number of units from the input to a Recurrent Neural Network (RNN). Rather than applying dropout to each unit, we apply random dropout to each macro-block. This algorithm has the effect of applying different drop out rates for each layer even if we keep a constant average dropout rate, which has better regularization effects. In our experiments using Recurrent Neural Network-Transducer (RNN-T), this algorithm shows relatively 4.30 % and 6.13 % Word Error Rates (WERs) improvement over the conventional dropout on LibriSpeech test-clean and test-other. With an Attention-based Encoder-Decoder (AED) model, this algorithm shows relatively 4.36 % and 5.85 % WERs improvement over the conventional dropout on the same test sets.
translated by 谷歌翻译
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction, but the main LM benchmarks are non-interactive, where a system produces output without human intervention. To evaluate human-LM interaction, we develop a framework, Human-AI Language-based Interaction Evaluation (H-LINE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
translated by 谷歌翻译
While witnessing the noisy intermediate-scale quantum (NISQ) era and beyond, quantum federated learning (QFL) has recently become an emerging field of study. In QFL, each quantum computer or device locally trains its quantum neural network (QNN) with trainable gates, and communicates only these gate parameters over classical channels, without costly quantum communications. Towards enabling QFL under various channel conditions, in this article we develop a depth-controllable architecture of entangled slimmable quantum neural networks (eSQNNs), and propose an entangled slimmable QFL (eSQFL) that communicates the superposition-coded parameters of eS-QNNs. Compared to the existing depth-fixed QNNs, training the depth-controllable eSQNN architecture is more challenging due to high entanglement entropy and inter-depth interference, which are mitigated by introducing entanglement controlled universal (CU) gates and an inplace fidelity distillation (IPFD) regularizer penalizing inter-depth quantum state differences, respectively. Furthermore, we optimize the superposition coding power allocation by deriving and minimizing the convergence bound of eSQFL. In an image classification task, extensive simulations corroborate the effectiveness of eSQFL in terms of prediction accuracy, fidelity, and entropy compared to Vanilla QFL as well as under different channel conditions and various data distributions.
translated by 谷歌翻译
Constrained reinforcement learning (RL) is an area of RL whose objective is to find an optimal policy that maximizes expected cumulative return while satisfying a given constraint. Most of the previous constrained RL works consider expected cumulative sum cost as the constraint. However, optimization with this constraint cannot guarantee a target probability of outage event that the cumulative sum cost exceeds a given threshold. This paper proposes a framework, named Quantile Constrained RL (QCRL), to constrain the quantile of the distribution of the cumulative sum cost that is a necessary and sufficient condition to satisfy the outage constraint. This is the first work that tackles the issue of applying the policy gradient theorem to the quantile and provides theoretical results for approximating the gradient of the quantile. Based on the derived theoretical results and the technique of the Lagrange multiplier, we construct a constrained RL algorithm named Quantile Constrained Policy Optimization (QCPO). We use distributional RL with the Large Deviation Principle (LDP) to estimate quantiles and tail probability of the cumulative sum cost for the implementation of QCPO. The implemented algorithm satisfies the outage probability constraint after the training period.
translated by 谷歌翻译
The recent advent of play-to-earn (P2E) systems in massively multiplayer online role-playing games (MMORPGs) has made in-game goods interchangeable with real-world values more than ever before. The goods in the P2E MMORPGs can be directly exchanged with cryptocurrencies such as Bitcoin, Ethereum, or Klaytn via blockchain networks. Unlike traditional in-game goods, once they had been written to the blockchains, P2E goods cannot be restored by the game operation teams even with chargeback fraud such as payment fraud, cancellation, or refund. To tackle the problem, we propose a novel chargeback fraud prediction method, PU GNN, which leverages graph attention networks with PU loss to capture both the players' in-game behavior with P2E token transaction patterns. With the adoption of modified GraphSMOTE, the proposed model handles the imbalanced distribution of labels in chargeback fraud datasets. The conducted experiments on two real-world P2E MMORPG datasets demonstrate that PU GNN achieves superior performances over previously suggested methods.
translated by 谷歌翻译
最近的深度学习模型在言语增强方面已经达到了高性能。但是,获得快速和低复杂模型而没有明显的性能降解仍然是一项挑战。以前的知识蒸馏研究对言语增强无法解决这个问题,因为它们的输出蒸馏方法在某些方面不符合语音增强任务。在这项研究中,我们提出了基于特征的蒸馏多视图注意转移(MV-AT),以在时域中获得有效的语音增强模型。基于多视图功能提取模型,MV-AT将教师网络的多视图知识传输到学生网络,而无需其他参数。实验结果表明,所提出的方法始终提高瓦伦蒂尼和深噪声抑制(DNS)数据集的各种规模的学生模型的性能。与基线模型相比,使用我们提出的方法(一种用于有效部署的轻巧模型)分别使用了15.4倍和4.71倍(FLOPS),与具有相似性能的基线模型相比,Many-S-8.1GF分别达到了15.4倍和4.71倍。
translated by 谷歌翻译
最近,Graph神经网络(GNNS)已成为聚光灯作为强大的工具,可以有效地在图形结构化数据上执行各种推理任务。随着现实图表的大小继续扩展,GNN训练系统面临可扩展性挑战。分布式培训是一种流行的方法,可以通过扩展CPU节点来应对这一挑战。但是,对基于磁盘的GNN培训的关注不多,该培训可以通过利用NVME SSD等高性能存储设备来以更具成本效益的方式扩展单节点系统。我们观察到,主内存和磁盘之间的数据移动是基于SSD的训练系统中的主要瓶颈,并且常规的GNN训练管道是不错的选择,而无需考虑此开销。因此,我们提出了Ginex,这是第一个基于SSD的GNN训练系统,可以在单台计算机上处​​理数十亿个图形数据集。受到编译器优化的检查员执行模型的启发,Ginex通过分开样品和收集阶段来重组GNN训练管道。这种分离使Ginex能够实现一种可证明的最佳替换算法,即被称为Belady的算法,用于存储器中的Caching特征向量,该算法是I/O访问的主要部分。根据我们对40亿尺度图数据集的评估,Ginex平均比SSD扩展的Pytorch几何得出了2.11倍的训练吞吐量(最大最高2.67倍)。
translated by 谷歌翻译
在本文中,我们提出了一种数据驱动的技能学习方法,以完全从离线的远程播放数据数据完全求解高度动态的操纵任务。我们使用双边遥控系统连续收集一大批灵活而敏捷的操纵行为,通过向操作员提供直接的力反馈来实现。我们以目标条件条件的政策和技能条件状态过渡动态的形式共同学习国家条件潜在技能分布和技能解码器网络。这使人们可以在学习的技能空间中执行基于模型的在线计划和离线计划方法,以在测试时完成任何给定的下游任务。我们提供模拟和现实世界的双臂操纵实验,表明可以实时组成一系列力控制的动态操纵技能,以成功地将框配置为随机选择的目标位置和方向;请参阅补充视频,https://youtu.be/la5b236ilzm。
translated by 谷歌翻译
量子联合学习(QFL)最近受到了越来越多的关注,其中量子神经网络(QNN)集成到联邦学习(FL)中。与现有的静态QFL方法相反,我们在本文中提出了可靠的QFL(SLIMQFL),这是一个动态QFL框架,可以应对时变的通信通道和计算能量限制。通过利用QNN的独特性质,可以分别训练并动态利用其角度参数,从而使其可行。模拟结果证实了SLIMQFL比香草QFL更高的分类精度,尤其是在较差的通道条件下。
translated by 谷歌翻译